博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2019全国卷(III)理科23题的另类解法
阅读量:5837 次
发布时间:2019-06-18

本文共 1455 字,大约阅读时间需要 4 分钟。

已知 $x,y,z\in\textbf{R}$且$x+y+z=1$

(1)求$(x-1)^2+(y+1)^2+(z+1)^2$的最小值;

(2)若$(x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{1}{3}$成立,证明:$a\leqslant -3$或$a\geqslant -1.$

法一:权方和

(1)$(x-1)^2+(y+1)^2+(z+1)^2\geqslant \frac{[(x-1)+(y+1)+(z+1)]^2}{1+1+1}=\frac{4}{3}$

(2)因为$(x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{[(x-2)+(y-1)+(z-a)]^2}{1+1+1}=\frac{(2+a)^2}{3}$ 所以$\frac{(2+a)^2}{3}\geqslant\frac{1}{3},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

法二:化归为点到面的距离

(1)点$(1,-1,-1)$到平面$x+y+z=1$的距离$d=\frac{|1-1-1-1|}{\sqrt{1^2+1^2+1^2}}=\frac{2}{\sqrt{3}},\;\;$即最小值为$\frac{4}{3}$

(2)点$(2,1,a)$到平面$x+y+z=1$的距离$d=\frac{|2+1+a-1|}{\sqrt{1^2+1^2+1^2}}\geqslant\frac{1}{\sqrt{3}},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

法三:拉乘法 (6月13日增补内容,只适合竞赛党和自主招生)

(1)令$f(x,y,z)=(x-1)^2+(y+1)^2+(z+1)^2+m(x+y+z-1),\;$则

$\left\{ \begin{array}{ll} f'_x=2(x-1)+m=0 \\ f'_y=2(y+1)+m=0\\ f'_z=2(z+1)+m=0 \\ f'_m=x+y+z-1=0 \end{array} \right.$

$\Rightarrow \left\{ \begin{array}{ll} x=\frac{4}{3} \\ y=-\frac{1}{3}\\ z=-\frac{1}{3} \end{array} \right.$

$\Rightarrow A=\cdots=\left[ \begin{array}{lcr} 2&0&0 \\ 0&2&0\\ 0&0&2 \end{array} \right]=8>0 $

故当$x=\frac{4}{3} ,y=-\frac{1}{3}, z=-\frac{1}{3}$时$(x-1)^2+(y+1)^2+(z+1)^2$取得最小值$\frac{4}{3}.$

(2)同(1)易知当$x=\frac{4-a}{3} ,y=\frac{1-a}{3}, z=\frac{2a-2}{3}$时$(x-2)^2+(y-1)^2+(z-a)^2$取得最小值$\frac{(2+a)^2}{3}$

$\Rightarrow \frac{(2+a)^2}{3}\geqslant \frac{1}{3},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

转载于:https://www.cnblogs.com/xuebajunlutiji/p/10989056.html

你可能感兴趣的文章
jupyter notebook的安装与基本操作
查看>>
C#: using JsonReader avoid Deserialize Json to dynamic
查看>>
[C++基础]在构造函数内部调用构造函数
查看>>
跟随我在oracle学习php(8)
查看>>
FZU - 1688 Binary land
查看>>
Spring 3.1.0 Hibernate 3.0 Eclipse Spring WEB例子
查看>>
如何用ABP框架快速完成项目(9) - 用ABP一个人快速完成项目(5) - 不要执着于设计模式和DDD理论,避免原教旨主义...
查看>>
用户交互
查看>>
libkyototycoon.so.2: cannot open shared object file: No such file
查看>>
ASP.Net 后台发回错误
查看>>
【微服务架构与实践】读后感
查看>>
使用Unicode写文本文件:一个简单类的示例
查看>>
UVA-10212 The Last Non-zero Digit. 分解质因子+容斥定理
查看>>
NG-ZORRO 使用相关
查看>>
Hadoop_09_HDFS 的 NameNode工作机制
查看>>
java传值和传址
查看>>
【CF】7 Beta Round D. Palindrome Degree
查看>>
UITableView中使用selectRowAtIndexPath: animated: scrollPosition:出现的问题
查看>>
c# 实现ComboBox自动模糊匹配
查看>>
使用WITH AS提高性能简化嵌套SQL
查看>>